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A notorious example: Subsidence of Ekofisk oil field

Water-weakening effect of chalk
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Microstructure and features of Chalk Material

“ “grains” originated
from the skeleton
of algae organism

% High porosity (40%
- 50%)

* Large surface area
(~2.0 m?/qg)

* Chemicadlly active

Zeta potential data
Equilibrium water: - 20 mV
Methanol: +10 mV
Oil: 0 mV




Our working hypothesis

» What is the relevance of these features

Intergranular stress

w
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Hypothesis: Mechanical behavior of
chalk is governed by Intergranular
stress but NOT effective stress!
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1. Surface forces and surface potential

“» Surface forces in the soil pores saturated with water solution:

= capillary forces (in case of unsaturation)

Interactions between water dipoles and charged solid surfaces
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1. Surface forces and surface potential

<+ How to characterize these surface forces?

Energy conserved: A’ +&w= A

[ Definition]
Surface potential

Q' =5w

Reservoir Porous medium

{J Work input: SW ‘ ‘

Solution (water) is moved
slowly from the reservoir A=A +Of
to the porous medium




2. Matric and chemical potentials

** Chemical potential of a species in the pore fluid

inition: u* =200 2 A"
Deflnltlono Ho= a(JanOfk) f qaf ~fm

T,p ,dn" p'™ m=k

Surface potential
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Classical chemical potential



2. Matric and chemical potentials

Donnan osmotic pressure

RT szO ngO
Matric suction I, = P |n 3\Af/
\ MHZO a H20
1

S.p' Q" =p'Qy +I (sw —11;)ds,

Sr

“ Surface potential

a

Equilibrium conditions:

1. Between two bulk phase:

ph (T, p",Chn' &)= u®(T,p?,C¥,n, &)
2. In an individual phase:

u'(T,p",.CY n" &) +9(Z-2,) = const




3. Pore water pressure & effective siresses

What is the pore water pressure?

Generalized osmotic pressure
Obervation well
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3. Pore water pressure & effective stresses
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3. Pore water pressure & effective stresses

*» Effective stresses of unsaturated soils are given by

¢ =6+ p°l-p,l | @full saturation
> 6 =6+ p 1+II1
/ Pint = ¢Sr (SM _H)
Matric suction: Sy=p —p"
Generalized osmotic pressure: [M=II,-p"QQ"
RTp", [ a.
Donnan osmotic pressure: ;= M'O '”(awq ]
W pore
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3. Pore water pressure & effective stresses

“* Physical significance of average intergranular siress
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3. Pore water pressure & effective stresses

The average intergranular stress (P, .- ) in a clay during drying
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3. Pore water pressure & effective stresses

Failure lines for the chalks saturated by various fluids
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3. Pore water pressure & effective stresses

Apparent cohesive pressure of various chalks
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4. Constitutive modeling of chalk

Constitutive framework: The Modified Cam Clay model

Intergranular PhysicoChemical pressure

/ P, = pcO(gvp’HO)h(I!)lnt)

p

Peo (‘9vp , Ho) = Peo eXp(;gv jeXp (_ﬁno)

Oil-saturated
( 1_[o =0 )

h( plnt) — eXp(ﬂ plnt)
Pint :¢Sr (SM _H) _ ‘
@S, =100%: p, =0, h=1.0 T =Ac/M P. p.

Water-saturated

=N




4. Constitutive modeling of chalk

Material parameters

Conventional:

(as in the Modified CamClay model) E,v, 4, x,M,¢, Peo

Physicochemical Effect: Crix» 1o, f8
Water Retention Characteristics: a,n
_ 1
For oil-saturated, II, =0 1 n

Cfx can be estimated using CEC value

1+(sy/a)




. Constitutive modeling of chalk

Compression of Estreux chalk (De Gennaro et al. 2005 )
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4. Constitutive modeling of chalk

Mechanical behavior of water- or saltrol-saturated chalk
(Homand and Shao 2000aq)
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4. Constitutive modeling of chalk

Mechanical behavior of water- or saltrol-saturated chalk
(Homand and Shao 2000q)
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4. Constitutive modeling of chalk

Mechanical behavior of water- or saltrol-saturated chalk
(Homand and Shao 2000q)

Sotrol satuarted

i ¢ 7 MPa confining pressure Soltrol saturated

, o 10 MPa confining pressure , © © 17 MPa confining pressure

* 14 MPa confining pressure * 20 MPa confining pressure
g, (%) " Simulation e (%) £, (%) Simulation e, (%)
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5. Concluding remarks

% Physicochemical effect remains elusive in the classical theory of
geomechanics, due 1o its microscopic nature, which is closely

related o many unresolved geomechanical problems.

4

 A'theoretical continuum framework has been recently developed

for describing coupled physical and chemical processes (C. Wel,

2014, Vadose Zone Journal).

% The proposed theory addresses well the constitutive behavior of

chalk materials.




Thank you for your attention!




