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1971 

Oil production began 

Depletion method 

1984 

Oil field compression 

Settlement: 3 m 

1987 

Inject seawater 

Platform jacked up 6 m 

1993-1994 

Reservoir pressure recovered  

2007 

Total settlement: 8-9 m 

A notorious example: Subsidence of Ekofisk oil field 

Water-weakening effect of chalk 



Microstructure and features of Chalk Material 

Coccoliths 

Rosettes 
Calcite 

 “grains” originated 

from the skeleton 

of algae organism 

 High porosity (40% 

- 50%) 

 Large surface area 

(~2.0 m2/g) 

 Chemically active 

SEM image 1 m

Zeta potential data 
Equilibrium water: - 20 mV 

              Methanol: +10 mV 

                        Oil: 0 mV 



Our working hypothesis 

 What is the relevance of these features 

Intergranular stress 

Hypothesis: Mechanical behavior of 

chalk is governed by Intergranular 

stress but NOT effective stress! op
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1. Surface forces and surface potential 

Surface forces in the soil pores saturated with water solution: 

  capillary forces (in case of unsaturation) 

  interactions between water dipoles and charged solid surfaces 

  electrostatic forces (Columbic force) 

  van der Waals forces 

  hydrogen bonding forces 

  diffuse double layer repulsion 

  others …   



1. Surface forces and surface potential 

 How to characterize these surface forces?  
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【Definition】 
  Surface potential ˆ fA

fA

Porous medium Reservoir 

Solution (water) is moved 

slowly from the reservoir 

to the porous medium 

wWork input: 

Energy conserved: 



Chemical potential of a species in the pore fluid 

, , ,

( )

( )
k

k
ff f m

f f f
f

ff

T Jn m k

Jn A

Jn
 












2. Matric and chemical potentials 
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Classical chemical potential 

Surface potential 

Definition: 



Surface potential 

1. Between two bulk phase: 
 

 

2. In an individual phase: 
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2. Matric and chemical potentials 
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3. Pore water pressure & effective stresses 

Equilibrium solution 
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What is the pore water pressure? 

Generalized osmotic pressure 



3. Pore water pressure & effective stresses 
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Effective stresses of unsaturated soils are given by 
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Generalized osmotic pressure: 

 
Donnan osmotic pressure: 
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3. Pore water pressure & effective stresses 

wp   σ σ 1 1



Physical significance of average intergranular stress 

 

3. Pore water pressure & effective stresses 
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3. Pore water pressure & effective stresses 
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3. Pore water pressure & effective stresses 
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3. Pore water pressure & effective stresses 

Apparent cohesive pressure of various chalks 
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4. Constitutive modeling of chalk 

M 

q
 

p

Oil-saturated 

Water-saturated c

/c M  

Constitutive framework: The Modified Cam Clay model  
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4. Constitutive modeling of chalk 

Material parameters 

Conventional: 
(as in the Modified CamClay model) 

 

Physicochemical Effect: 
 

Water Retention Characteristics:  
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       can be estimated using CEC value  fixc



4. Constitutive modeling of chalk 
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4. Constitutive modeling of chalk 
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4. Constitutive modeling of chalk 
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4. Constitutive modeling of chalk 
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5. Concluding remarks 

 Physicochemical effect remains elusive in the classical theory of 

geomechanics, due to its microscopic nature, which is closely 

related to many unresolved geomechanical problems.  

 A theoretical continuum framework has been recently developed 

for describing coupled physical and chemical processes (C. Wei, 

2014, Vadose Zone Journal). 

 The proposed theory addresses well the constitutive behavior of 

chalk materials.  



Thank you for your attention! 


