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1. Introduction T
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One type of materials Is characterized by the variations of the
components, structures and properties of physics and mechanics along a
given coordinate with only small or no variations along the other two
coordinates perpendicular to it. Such materials are called functionally
graded materials and can be regarded as a special type of general
heterogeneous material. 3



Two !ypes o! non—Homogeneous materials along one direction are

presented in the following:

(1) Natural layered media

Log(EMPay

- Gircular load : 0 1 4
due to tire \]{\b¢ ¢¢ ¢ r 0 .
asphalt concrete <& ""?‘h1=100mm, v,=0.356
granular base “h;=150mm, v,=0.26 .
| : : : 21
subbase h3=400mm, v,=0.3
7 3
_subgrade - <.  h=8000mm, v,=0.5
[1]
=
- 5
2
6 [
T
_ 8 I
h & rigid rock Yz
. roug rigea roc T : — ol
a) A typical pavement system i
10 L

b) Piece-wise variation of
layer moduli with depth



" N

(2) The man-made materials, functionally graded materials

SIAIYON Glass
E-110 GPa

Suresh S. Graded materials for resistance to contact
deformation and damage. Science,2001, 292:2447-51
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The study of the fracture mechanics of layered elastic solids has always occupied
a prominent position in solid mechanics.

The boundary element method (BEM) is now firmly established in many
engineering disciplines and is increasingly seen as an effective numerical
approach.
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The discretized domain for FEM The discretized boundary for BEM

The traditional BEM is based on Kelvin solution, which is the solution of
homogeneous media of infinite extent subject to concentrated forces. So, many
researchers developed the fundamental solutions of different materials. -
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2% Yue’s solution of Tayered elastic solids of infinite extent
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Abstract. This paper presents fundamental singular solutions for the generalized Kelvin problems
of a multilayered elastic medium of infinite extent subjected to concentrated body force vectors.
Classical integral transforms and a backward transfer matrix method are utilized in the analytical
formulation of solutions in both Cartesian and cylindrical coordinates. The solution in the transform
domain has no functions of exponential growth and is invariant with respect to the applied forces.
The convergence of the solutions in the physical domain is rigorously and analytically verified. The
solutions satisfy all required constraints including the basic equations and the interfacial conditions
as well as the boundary conditions. In particular, singular terms of the generalized Kelvin solutions
associated with the point and ring types of concentrated body force vectors are obtained in exact
closed-forms via an asymptotic analysis. Numerical results presented in the paper illustrate that
numerical evaluation of the solutions can be easily achieved with very high accuracy and efficiency
and that the layering material inhomogeneity has a significant effect on the elastic field.
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The layered solid in study can be briefly described as follows:

(1) The total number of the dissimilar layers is an arbitrary integer.

(2) The dissimilar homogeneous layers adhere to two upper and lower
elastic solids.

(3) The interface between any two connected dissimilar layers is fully
bonded.



THe !ungamenta‘ so‘ution IS characterized by the following:

(1) The classical Fourier integral transforms are employed to reduce
the partial differential equations into algebraic equations.

(2) In the transform domain, the unknown coefficients of algebraic
equations governing each layer are obtained using the interfacial
and boundary conditions.

(3) The unknown coefficients can be analytically determined from
boundary and interfacial conditions.

(4) The solution In the physical domain is obtained by integrating
their transformed images and expressed In the form of inverse
Hankel transform integrals.

The solution Is also named as Yue’s solution by some researchers:

Maloney JM, Walton EB, Bruce CM, Van Vliet KJ. Influence of finite thickness
and stiffness on cellular adhesion-induced deformation of compliant substrata.
Physical Review E, 2008, 78(4):1-15.

Merkel R, KirchgefZer N, Cesa C M, Hoffmann B. Cell force microscopy on
elastic layers of finite thickness. Biophysical Journal, 2007, 93: 3314-3323. o



Because tHe ‘ayer number IS any arbitrary nonnegative integer, the

graded media can be analyzed by using the layer discretization
technique. The following figure shows the approximation.

The elastic parameter of a half-space

varies in depth with any form.

The graded solid of semi-infinite
extent is closely approximated by n
bonded layers of elastic
homogeneous media. The elastic
parameters of each layer are
presented according to the depth. A
homogeneous half-space Is bonded
to the n layered solid. When the
layer number n approach infinite,
the solution of the graded solid can
be obtained.
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Yue’s solution has been used to develop the BEM for the analysis of
fracture mechanics in layered and graded solids.

Xiao HT and Yue ZQ. A generalized Kelvin solution based BEM for contact problems of
elastic indenter on functionally graded materials. CMES: Computer Modeling in Engineering &
Sciences, 2009, 52(2):159-179.

Yue ZQ, Xiao HT and Pan E. Stress intensity factors of square crack inclined to interface of
transversely isotropic bi-material. Engineering Analysis with Boundary Elements. 2007,31:50-56.

Xiao HT, Yue ZQ, Tham GL. Stress intensity factors for penny-shaped cracks perpendicular
to graded interfacial zone of bonded bi-materials. Engineering Fracture Mechanics, 2005,
72:121-143.

Xiao HT, Yue ZQ, Tham GL. Analysis of an elliptical crack parallel to graded interfacial
zone of bonded bi-materials. Mechanics of Materials, 2005, 37:785-799.

Xiao HT, Yue ZQ, Tham GL, Lee CF. Analysis of elliptical cracks perpendicular to the
interface of two joined transversely isotropic solids. International Journal of Fracture. 2005,
133:329-354.

Yue ZQ, Xiao HT, Tham GL, Lee CF and Yin JH. Stresses and displacements of a
transversely isotropic elastic halfspace due to rectangular loadings. Engineering Analysis with
Boundary Elements. 2005, 29: 647-671.

Yue ZQ, Xiao HT, Tham GL, Lee CF, Pan E. Boundary element analysis of three-
dimensional crack problems in two joined transversely isotropic solids. Computational

Mechanics. 2005, 36:459-474. .
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Yue ZQ, Xiao HT and Tham GL. Elliptical crack normal to functionally graded interface of
bonded solids. Theoretical and Applied Fracture Mechanics, 2004, 42:227-248.

Yue ZQ, Xiao HT and Tham LG. Boundary element analysis of crack problems in
functionally graded materials. International Journal of Solids and Structures. 2003, 40(13-14):
3273-3291.

Yue ZQ, Xiao HT. Generalized Kelvin solution based boundary element method for crack
problems in multilayered solids. Engineering Analysis with Boundary Elements, 2002, 26(8):
691-705.

Xiao HT, Yue ZQ and Zhao XM. A generalized Kelvin solution based method for analyzing
elastic fields in heterogeneous rocks due to reservoir water impoundment. Computers &
Geosciences, 2012, 43:126-136.

Xiao HT and Yue ZQ. Elastic fields in two joined transversely isotropic media of infinite
extent as a result of rectangular loading. Int. J. Numer. Analy. Meth. Geomech., 2013,37:247-
2717.

Xiao HT and Yue ZQ. A three-dimensional displacement discontinuity method for crack
problems in layered rocks. Int. J. Rock Mech. Min. Sci., 2011, 48:412-420.

Xiao HT and Yue ZQ. Stress and displacement in FGMs of semi-infiite extent induced by
rectangular loading. Materials, 2012,5(2):210-226.

Xiao HT, Xie YY, Yue ZQ. Analysis of square-shaped crack in layered halfspace subject to
uniform loading over rectangular surface area. CMES: Computer modeling in Engineering &
Sciences. 2015, 109-110(1):55-80.

Xiao HT and Yue ZQ. Fracture mechanics in layered and graded solids: analysis using
boundary element methods. Berlin: De Gruyter & Higher Education Press, 2014. 12



3. Numerical methods for analyzing the crack problem
In a layered half-space

3.1 LayerSmart3D:Numerical method for elastic fields in a layered
medium

We have developed a numerical method for calculating elastic fields
of a heterogeneous medium with depth using Yue’s solution. The
stresses o; (Q) and displacements U; (Q) at any point Q of the

layered medium are described as

aij(Q):jsa;k(Q,P)tk(P)dF(P) (1)

0 (Q)= Uk QP (P)AS(P)  (2)




where oy, (Q,P) are stresses of Yue’s solution for the field point Q
due to the unit force along the k direction at the source point P,

t(P) is the traction at the source point P, and the integral domain
IS the loading area.

The quadrilateral element is employed to discretize the boundary
surfaces. The local coordinate system is attached at every element.

The loading domain S is discretized N

Into ne elements. Expressions (1) and . |7 ;

(2) are written in the forms T 1

Oj (Q)=Z_;_SGUSK(Q,P)tk(P)dS(P) 2) [ :

LAy
o

4 (Q)=2 [, U (P (P)aS(P)

e=1 14
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In global and local coordinate systems, there are the following

transform relationships of coordinate and traction values:
410 8 410 8

X = |Z—1: N|(51”)Xil G = |Z—1: N|(5’77)til

So, we have the following discretized forms

ne 4108

oy =2 2t [ [ o5 N, detddédy (4)
e=1 I=1
ne 4108

= >t [ upN, det Jdédy (5)
e=1 I|=1

where J Is the matrix of the Jacobian transformation and det J Is the
corresponding determinant. By using the coordinate transform, the
Integral domains in expressions (4) and (5) are changed into the domain
In the local coordinates.

The integrals of expressions (4) and (5) are executed in the local
coordinates and are calculated by using the regular Gaussian quadrature.

15
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3.2 LayerDDM3D: DDM for analyzing crack problems in a layered

medium
We have developed a new displacement discontinuity method (DDM)

for the analysis of crack problems in layered strata of infinite extent.
This approach is also based on Yue’s solution and the corresponding
computer code was written in FORTRAN.

0 Hp, Vg XoOry
-
I by, vy, by
/T] crack
k-1 / // Mg-1s Via1s Dgo
k / // s Vi Dy
k+1 =" Mg+1s Viets Dyay

.LI'[]"' 1"'?I]"' hI]

L7, V. o
n+1 Y Sl Yntl

Cracks in the multilayered solids of infinite extent 16
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In global coordinates, the discontinuous displacements of the
crack surfaces are defined as

Auj(Qrg):uJ(QFE)_uj(QFc) (6)

U;is a displacement along the j direction. The traction on the
crack surface is defined as t; ( P. ) The basic equations of Yue’s

solution based DDM are as follows

tj(P+)+ni(PFE)L€Ti;k( } ,Q)Au (Q)MT(Q)

I'c

0 (7)

where n (P, | Is the cosine of normal direction at the source point,

C

Tk (PF;,QB Is the kernel function, which can be calculated by

using the traction of Yue’s solution.

The 9-noded elements are used to discretize the crack surface.
There are two types of elements including continuous and

discontinuous elements.
17



a The contmuous clement b The discontinuous element (Type I) C The discontmuous element ( Type 1T)
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Eq. (7) can be discretized into the following form:

NE
EJ-[PF+}+az,-[Pr+}Z/;J'T,;.k[PFJ, DAuQdNQ) =0, ijk=xyz (8)

e= 1

Eqg. (8) contains regular and hyper-singular integrals. The regular
Integrals can be calculated using Gaussian quadrature. The hyper-

singular integrals can be calculated using Kutt’s quadrature.
18
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In calculating the hypersingular integral, the element should be
divided into several triangle domains as follows:

a b C
I L7 Ao

Rt

&
&
Rt

G
| ©

The hypersingular integral in Eq. (8) can be further written as
ZL% '/:H*J T [Pra (85 9),Q(r, 00| gir, 0oy, 0N (r, By dir ),
In the numerical examples, Kutt’s 20-point quadrature is used in the

finite-part integral with respect to r, and 20 Gaussian points for the
regular outer integral with respect to 6. i
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When the cracked layered solids of infinite extent are subject to

the loading only on the crack surface, only the crack surface can
be discretized.

A semi-infinite homogeneous solid

P | A homogeneous mid-layer

A homogeneous semi-mfnite solid

A squared crack in the layered solids of

i finite extent The mesh of a square crack

20
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3.3 The superposition principle of fracture mechanics
The above-mentioned two numerical methods and the superposition
principle in fracture mechanics are utilized to analyze crack problems
In a layered medium. The analytical process is described as follows:

(1) LayerSmart3D is employed to obtain the stress fields of a layered
medium without a crack under the action of rectangular loadings on the
boundary surface.

(2) Using the superposition principle, the tractions, which are equal to
the stress calculated above and have opposite directions, are then
loaded on the crack surfaces in the layered medium without rectangular
loadings on the boundary surface.

(3) LayerDDM3D is employed to obtain the discontinuous
displacements of the crack surfaces under the action of the above
tractions. 21



3.4 The crack problems to be analyzed
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Crack in a layered half-space subject to loadings on the boundary surface,,



In an infinite layered medium, the elastic modulus of the
upper semi-infinite medium is given an extremely small
value and the Poisson’s ratio of the medium, I1.e.,

E,=10""MPa, v, =0.3

In this way, the fundamental solution of a layered
medium of semi-infinite extent is obtained.

23



The discretized loading area and crack surface
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The discretized loading area: The discretized crack surface:
501 nodes and 150 elements 441 nodes and 100 elements
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4. Stress fields of a homogeneous half-space without cracks

4.1 The non-crack area located directly below the loading area

0.2a,

(Svllp

Stress ¢, on It at d=0 and h=0.2a Stress o, on /¢ at d=0 and h=0.2a
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The stress variations with the depth h.
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It can be found that the absolute values of the stresses decrease with
depth h increasing.
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4.2 The non-crack area located at different positions along the x axis
p

0.20 o — — — — — - — — — Z 03
| Wa=1.0, v%=0 va=1.0, v/a=0 0
015 4 | 0~ d'a=0,0, da=1.0 02 = | o~ da=00 da=0.5
. - |
da=1.8, v~ da=20 l 1a=10 Ya=15
010 dia=2.5, da=3.0 | { v dus2.0 Vaw2 6
d'a=3.5, da=4 0 0.1 . '{" 3.0, Va=3.5
o8| phn =
0.00 - i"v e deim - j = 004 22 (YRR (OO L. Tk \‘T R S —taaaca
= . - . - o : % \
C: 00547 > < .
- o1 ~
010 4
0.15 02
0.20 - - ' 034 y T
10 08 08 04 02 00 04 08 08 0
0.25 gy T e e

10 08 L& Ha H2 00 0.2 0.4 0,6 08 1.0

xla

Stress o,, on It at h=a Stress o, on Ic at h=a

27



5. Analytical methods of square-shaped cracks in layered media

5.1 Calculating the discontinuous displacements of crack surfaces

Using the superposition principle, the -

B Lia=a

absolute values of the tractions on the
crack surfaces in a layered half space ]

Vo

without the surface force p are equal to

CLird

‘ X

the ones of the shear stresses on the area
In a layered half-space without a crack

A:Lig=0

whilst the directions of the tractions and
the shear stresses are completely
opposite.

A Lirg I

The crack surfaces are subjected to the following loadings:

fp=-0,and f =-0o,

¥

Dt

The stresses are calculated using the code LayerSmart3D. Thus,
discontinuous displacements are calculated using the code

LayerDDMS3D.

28



5.2 Calculating stress intensity factors and analyzing crack growth

The stress intensity factor can be calculated using the discontinuous
displacements of the crack surface and the following formula:

E
i'..a.: Arl=+m, @p=—-m/2),

“=705 2:.", o7
F —-
Ky a5 \2 Atty(r,H = 0 =—1/2)
E [=n _
Km = 1+ }1'.' 2 i'nt.!t[i' H= +m, p=—1/2),

Growth of a crack In elastic solids subject to complex stress states
can be assessed using the minimum strain energy density criterion.
The criterion states that local instability 1s assumed to occur when
the local minimum energy factor S,;, reaches a critical value S,

The strain energy density can be calculated using the formulae:

S$(0)=a,(0)K; +a5(0)K,

29



. nEEEEmples

K Variations with h

.-_.‘°‘|-+ e - -04;"-*'
H“""“H—ﬁqj—q»—i-ﬂf""""-‘ :

Ivlaterial 1

K i el
llJ

L
—_

______ A homosznsous half-space

o — n— dl=0, k=1 =3 : ; ; '
| Came 1-1: die=0 : \ : : :
—*— Ri=0.6, =08 By ; e

—v— =], Ria==11] | " : P
—a— RiEl4

Ivkterial 2 a d .

']

L J

Ilaterial 3

0.25 ¥ =
0.0 0.5 0 5 2.0 2.5 3.0 3.5 4.0
Lia
B Siin Variations
2 hom oEeneous half-space 0z - - g
0 —n— k=], dig=0 N I 2 hom ogensous half-zspace : : :
- Czzs 2-1: dlg=D 0.7 doeeed —n—hiEldie=t e AN :'.'.‘.J.:::.".'.':ﬁ... ...........
—+— =D, [PEE:] Czi2 1-1: da=0 : A : -
—y— il he=l2 : s . —e— kS —A—he0s| T : L
0.0 I SO Sl Didi oy —r— el g1y [Tt A
—d— Rl 4 : ;=" : : : :
. . . 5 " 1 [me-heEls : : : 5
i ; R M 05 H T T i i i : 0]
o : : e S a a i E | | i
Se= 0 I 3 Lﬁ#"”J .......... =) 1 : : \ : : : :
= : T H = - : : ; : : : ; |
= : Ak 0 e M :
= e 5 ST B ;
~s g oy A __j.f' : of! d
0.0 ...1:‘2?:3,“,{;.5. ...... B g0 :
\. R Ly ;
: . 02 SO SO SR e b S H—
: . = el
PP TS O T S O AU W T S ROV 5o ST R
: : A do i i N : _,.-"’m...c-ir-rﬂ-‘l'“*"l'**w-#-_,.ﬂ |
AN 0.1 - ligesge -t 1 Ty TR !
~a 0 _»._4:."-“% _‘J_-._‘::‘ ‘Jl_j_q-q-i-qﬂ'-l-ﬂ-'l-d-i-iﬂ-q-q-qq_‘
) ' I E‘W&Uwﬁﬂﬁﬂd W :
=Lz L I u I u I u I u I u I u I u 2. T f T 1 T T T i 1 1 T
0.0 0.E 0 £ 2.0 2E 3.0 35 40 0o 05 15 20 25 3.0 15 a2 30
Iia Lia
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Variations of K, with h
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/. Recommendations

The two proposed numerical method,
together with the superposition principle of
fracture mechanics, can be applied to the
analysis of cracks in a half-space subject to
complex loadings.

Of course, the proposed methods can be

used for the analysis of crack problems in

a layered halfspace with arbitrary elastic
moduli with depth.
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