International Meeting of CSRME 14th Biennial National Congress

Replicating Brittle and Hard Rocks Using 3D Printing with Applications to Rock Dynamics and Crack Propagation

Jianbo ZHU

Department of Civil and Environmental Engineering The Hong Kong Polytechnic University

Outline

Background

Identification of a suitable 3DP material for mimicking brittle and hard rocks

Investigation of dynamic response of artificial rocks

Solution 3D internal crack growth under static and dynamic compression

Motivation

- 1) It is fancy
- 2) Previous works: Pioneer application of 3DP in rock mechanics such as Ju et al. (2014)
- 3) A 3DP centre at HKPolyU over 20 advanced 3D printers

Background

Problems of experimental study using natural rock specimens:

1) impossible to repeat the experimental results due to rock heterogeneity;

2) expensive to obtain rock cores from deep underground, and many samples are required during tests;

3) difficult to produce rock samples with internal 3D flaws;

4) difficult to observe and accurately detect spatial evolution of cracks inside rocks in real-time

Background

Three-dimensional printing (3DP), also termed as rapid prototyping, builds up objects by fabricating parts layer upon layer based on a computerized 3D model data.

Advantages: precise fabrication;

fast and flexible preparation;

high repeatability;

no restrictions on geometrical shapes

Typical 3DP techniques:

Fused deposition modelling (FDM), Powder based 3DP, Stereolithography (SLA), Selective laser sintering (SLS).

Background

More than 20 3D Printers at PolyU

20 years history, 3DP central facility

Outline

Background

Identification of a suitable 3DP material for mimicking brittle and hard rocks

- Investigation of dynamic response of artificial rocks
- Solution 3D internal crack growth under static and dynamic compression

Five targeted available 3DP materials

N		D	Layer	Density	Printing
Material	Iransparency	Printer	Layer Densit thickness (g/cm ²) 0.1 mm 1.37 0.1 mm 1.27 0.15 mm 0.66 0.254 mm 1.11 0.05 mm 1.21	(g/cm^3)	method
Ceramics	Opaque	Z Corp 301	0.1 mm	1.37	3DP
Gypsum	Opaque	ProJet 860	0.1 mm	1.27	3DP
PMMA	Opaque	VX200	0.15 mm	0.66	3DP
SR20	Opaque	Fortus 380	0.254 mm	1.11	FDM .
Resin	Translucent	Viper si ²	0.05 mm	1.21	SLA

The printing details of the samples

3DP prepared samples before testing

PMMA (poly methyl methacrylate), SR20 (acrylic copolymer), Resin (accura® 60) ⁸

Uniaxial compression results

Stress-strain curves and the 3DP samples after testing

Uniaxial compression results

Powder-based 3DP-based specimens failed with very low loading;

FDM- and SLA-fabricated specimens yielded with high stress.

Sample	σ_c (MPa)	€ _A (%)	$\mathcal{E}_L(\%)$	E (GPa)	υ	Printing method
Ceramics	2.74	1.51	-0.42	0.17	0.20	Powder-based 3DP
Gypsum	3.79	3.07	-1.28	0.43	0.29	Powder-based 3DP
PMMA	3.50	5.87	-4.36	0.21	0.33	Powder-based 3DP
SR20	105.56	12.23	-10.05	2.74	0.36	FDM
Resin	110.30	3.60	-1.75	3.81	0.42	SLA

Mechanical properties of the 3DP samples

Brittleness enhancement of 3DP resin

1. Freezing

Wing crack

Macro-crack

Anti-wing crack

(b) Fragments

3. Addition of micro-defects

Outline

Background

Identification of a suitable 3DP material for mimicking brittle and hard rocks

Investigation of dynamic response of artificial rocks

Solution 3D internal crack growth under static and dynamic compression

Hainan volcanic rock was used to construct 3D digital rock cores

$\sigma_{\rm c}$ (MPa)	$\sigma_{\rm t}$ (MPa)	E (GPa)	v	ρ (g/cm ³)	Porosity
81.3	7.1	40.1	0.24	2.6	7.2%

Mechanical properties of the volcanic rock

Volcanic rock sample

Micro-CT scan image of Volcanic rock

Micro-CT scanner, 3D printer

Micro-CT scanner: X-ray Micro-CT XRM 500 (RIPED, Beijing)

Scanning range: 50×50 mm; Pixel: 2000×2000; Resolution: 50 µm

The CT scanning system (Ishutov *et al.* 2015)

Micro-CT scan image of Volcanic rock

3D Printer: 3D Systems Viper si² (SLA)

3D Systems Viper si²

Theoretical resolution: 2.5 μm Present layer thickness: 50 μm

Advantages:

smooth surface finishing;

excellent optical clarity;

high accuracy;

excellent fine feature detail.

Workflow of printing resin sample

Dynamic testing device

Split Hopkinson pressure bar (SHPB) system: Dynamic compression and Brazilian tests

FASTCAM SA1.1 high-speed camera -100,000 frame per second

The schematic of SHPB system

Dynamic testing results

The dynamic strength and the pre-peak stress-time behavior agree well with those of the natural volcanic rocks.

Dynamic compressive stress-time curves Dynamic

Dynamic tensile stress-time curves

Zhou T and Zhu JB (2016). The 2nd International Conference on Rock Dynamics and Applications (Conference Best Paper Award)

Dynamic testing results: Compression

Similar fracturing process and failure patterns

60us

80us

160us

100us

200us

lus

250us

1000us

Dynamic testing results: Compression

Fracturing process of 3DP manmade rock under compression.

Loading direction: from right to left.

Dynamic testing results: Brazilian

Similar fracturing process and failure patterns

Dynamic testing results: Brazilian

Fracturing process 3DP manmade rock in dynamic Brazilian test

Loading direction: from right to left.

Outline

Background

Identification of a suitable 3DP material for mimicking brittle and hard rocks

Investigation of dynamic response of artificial rocks

Solution 3D internal crack growth under static and dynamic compression

Experimental studies on 2D crack growth

Research group	Articles	Notes		
Prof. H Horii and S Nemat-Nasser	Nemat-Nasser and Horii (1982); Horii and Nemat- Nasser (1985, 1986)	Studies on 2D crack propagation and coalescence in plate resin under static uniaxial compression		
Prof. HH Einstein and his colleagues	Reyes and Einstein (1991) Bobet and Einstein (1998) Wong and Einstein (2009) Moradian et al. (2016)	2D crack propagation and coalescence in rock and gypsum materials have been systematically studied via static compression tests		
Geotechnical colleagues at HK PolyU	Wong and Chau (1997) Wong et al. (2001) Yin et al. (2014)	2D and surface crack growth in rock, PMMA and sandstone-like materials have been systematically studied via static compression tests		
Other groups	Lee and Jeon (2011) Yang and Jing (2011) Zou and Wong (2012) Li et al. (2016)	2D crack fracturing in rock and gypsum materials have been studied through conducting static and dynamic compression tests		

Static compression test

Li et al. (2016)

Transmitted bar Incident bar Dynamic compression tests

3D cracks exist in natural rocks

3D reconstructed CT images of volcanic rock

Difference between 2D and 3D crack growth

Limitations of existing methods for producing 3D internal cracks

Producing 3D internal flaws using the SLA-based 3DP

Prismatic 3DP resin	Loading type	Sample no	a	ß	Dorigo
Samples		S-1	30°	μ -	
Two high speed	Static	S-2	50 45°	- 105°	TAW-2000 rock testing system
iwo mgn-speed	Dynamic	D-1	30°	-	
cameras	Dynamic	D-2	45°	105°	SHPB system
		<i>4</i>			

Group and test information of samples

Geometry of the pre-existing single flaw and double flaws in 3DP resin samples, where α is flaw angle, β is ligament angle, 2a is flaw length, and b is ligament length.

Influence of pre-existing flaws and loading types on mechanical properties

Zhou T and Zhu JB (2016). The 9th Asian Rock Mechanics Symposium (Conference Best Paper Award)

Single flaw

3D crack growth under static compression

Wing and anti-wing cracks intermittently generated. The fracturing process from A to D is approximately 1 minute.

Single flaw

3D crack growth under dynamic compression

Wing cracks continuously propagated. The fracturing process from A' to D' is approximately 100 µs.

Single flaw

3D crack propagation under static and dynamic compression

31

Double flaws

3D crack propagation and coalescence under static compression

Double flaws

3D crack propagation and coalescence under dynamic compression

Wing cracks continuously propagated.

Double flaws

Comparison of 3D crack propagation in static and dynamic tests

Static (final fracturing)

Dynamic fracturing

3D crack propagation velocity

Unstable for static test, more stable for dynamic test.

The maximum velocity is higher in static test.

3D crack propagation velocities in static and dynamic compression tests

Conclusions

- 1) The transparent resin fabricated by SLA is the most suitable 3DP material among the five targeted 3DP materials for mimicking brittle and hard "intact" rocks, particularly after brittleness enhancement.
- 2) Combined with micro-CT scanning and 3D reconstruction technologies,3DP resin can effectively replicate dynamic behavior of natural rocks
- 3) The SLA-fabricated resin is suitable for studying 3D crack growth
- 4) 3D crack growth behaviors appear to be loading rate dependent: Static loading: secondary cracks lead to burst-like failure;
 Dynamic loading: wing cracks lead to splitting failure.

Thank you for your attention!

jbzhu@polyu.edu.hk

