Explanation of Thermo-Hydraulic-Mechanical Behavior of Geomaterials in So-Called Isothermal Heating Test

Feng Zhang¹ and Yuhei Kurimoto²

¹Professor, Nagoya Institute of Technology, Japan ²Ph.D. candidate, Nagoya Institute of Technology, Japan

14-17 December, 2016, CSRME 14th Biennial National Congress

Background \sim high-level radioactive waste \sim

- In considering the problem of the deep geologic disposal for high level radioactive waste, thermo-hydraulic-mechanical (THM) behavior of artificial barrier, mainly composed of highly compacted bentonite and very stiff clays, is a very important factor that needs to be studied.
- Many laboratory, field tests and numerical analyses including constitutive modelling related to thermodynamic behaviors of geomaterials have been done.

Previous studies \sim Cekerevac and Laloui (2004) \sim

q

atoric stress

Thermo-mechanical

testing paths

Consolidation paths

Unloading path

Drained heating Shear paths

1 - 1

Heating test

 The specimen was heated gradually up to 90°C with a rate of about 1℃/hour (Initial temperature: 22°C)

等価応力の概念

▶ 温度変化により、応力変化と弾塑性ひずみが生じる(一定応力条件下)

温度変化による弾性ひずみをフックの法則に基づき, 等価応力 $\widetilde{
ho}_{\!\!m}$ を次式で定義

$$\widetilde{p}_{\rm m} = p_{\rm m} + K \varepsilon_{\rm v}^{\rm eT} \qquad \longleftarrow \qquad \varepsilon_{\rm v}^{\rm eT} = 3\alpha^{\rm s} (T - T_0)$$
$$= p_{\rm m} + 3K\alpha^{\rm s} \varepsilon_{\rm v}^{\rm eT} (T - T_0)$$

~等価応力の概念~ Zhang, S. and Zhang, F. (2009)

Material and physical parameters

FEM Program: "SOFT" (Xiong, Y., 2015)

• THM coupling finite element-finite difference (FE-FD) analysis

<u>Constitutive model</u>: "Modified thermo-elasto-visocoplastic model" (Zhang, S. and Zhang, F., 2009; Xiong, Y., 2015)

- Subloading (Hashiguchi, K. et al., 1977) & t_{ij} transformed stress space (Nakai, T. and Mihara, Y., 1984)
- Thermal expansion coefficient $(a^{s}_{T}) \rightarrow Any$ material will exhibit expansion whenever it is heated at elementary level

Parameters	Unit	Kaolin clay
Compression index λ	-	0.10
Swelling index κ	-	0.01
Critical state stress ratio $R_{\rm f}$	-	2.09
Void ratio $N (p = 98 \text{ kPa on } N.C.L.)$	-	0.93
Poisson's ratio ν	-	0.35
Parameter for plastic potential shape β	-	1.5
Time dependent parameter α	-	0.0
Time dependent parameter C_n	-	0.0
Degradation parameter of overconsolidation state <i>a</i>	-	2000
Permeability k	m/min	3.0E-9
Thermal expansion coefficient of solid phase α^{s} _T	K-1	-8.0E-6
Thermal expansion coefficient of fluid phase $\boldsymbol{\alpha}^{f}_{T}$	K-1	-2.07E-4
Specific heat of solid phase c^s	J kg ⁻¹ K ⁻¹	840
Specific heat of fluid phase $c^{\mathbf{f}}$	J kg ⁻¹ K ⁻¹	4184
Thermal conductivity of solid phase k^{s} _T	kJ m ⁻¹ K ⁻¹ min ⁻¹	0.18
Heat transfer coefficient of air boundary α_{c}	kJ m ⁻² K ⁻¹ min ⁻¹	230

Yield function

$$f\left(t_{ij}, \mathcal{E}_{v}^{p}, T\right) = \ln\left(\frac{t_{N}}{t_{N0}}\right) + \xi\left(X\right) - \frac{1}{C_{p}}\left(\mathcal{E}_{v}^{p} - \frac{\rho}{1 + e_{0}}\right) = 0$$

Evolution law

$$\frac{\dot{\rho}}{1+e_0} = -\Lambda \frac{G(\rho,t)}{\tilde{t}_N} + h(t)$$
$$= -\Lambda \frac{a \cdot \rho \cdot \rho^{C_n \ln(1+t/t_1)}}{t_N + 3K\alpha_T^s(T-T_0)} + \dot{\varepsilon}_v^0 (1+t/t_1)^{-\alpha}$$

Element simulation

Observed results

(test data: Cekerevac and Laloui, 2004)

Objective and boundary condition

<u>Objective</u>

- Is the contractive behavior of soft clay when heated under constant isotropic stress condition an elementary behavior?
- If not, how to model contractive behavior of soil in the heating test with a rational constitutive model?

Boundary condition

- FEM mesh: Node 2541 and Element 2000
- Hydraulic and thermal boundary conditions: all boundaries are set to be drained and heat source

Initial condition

- OCR: 1.0, 1.2, 1.5, 2.0, 3.0, 6.0, 12.0 (Consolidation yield stress=600kPa)
- Temperature: 22℃ (About 4℃/hour)

Heating test (OCR=1.0)

<u>Temperature=26℃</u>

Even if the heating process is very slow, the uneven thermal field within the heating sample may give rise to non-uniform stress and strain fields.

Distributions of various physical quantities within the testing samples (OCR=1.0) at different heating stages

Heating test (OCR=12.0)

<u>Temperature=26℃</u>

Distributions of various physical quantities within the testing samples (OCR=12.0) at different heating stages

Temperature-volumetric strain relation

Observed results

Simulated results

It is not necessary to introduce any extra parameter into properly organized thermo-elastoplastic model, to describe the phenomenon of "the volumetric contraction of soft clay due to heating"

Comparison of observed and simulated temperature-volumetric strain relation (test data: Cekerevac and Laloui, 2004)

The calculated volumetric strain is on the whole agreed with the testes one in its variation with temperature, though quantitatively there still existed some discrepancy.

Time histories $\sim u_w, e_v, \sqrt{2I_2} \sim$

Time histories of various physical quantities at the center and the corner of the samples with different OCR

The non-uniform stress and strain fields

> The heating process can be roughly divided into two stages:

Stage 1: Heat transfer, Stage 2: Pore water dissipation

- As the thermal conductivity is much higher than the hydraulic conductivity in soft clay, Stage 1 can be considered as very short compared to Stage 2.
- As the result, thermal dilation is very fast, followed by the water pressure dissipation.
- However, Stage 1 and Stage 2 are not evenly happen within the sample and therefore volumetric change will also become uneven, resulting in contraction in some areas.
- This unevenness will not disappear even if EPWP dissipated completely and the temperature in the whole sample became uniform after long time.
- Because whenever a contractive strain occurs, plastic volumetric strain will also occur and basically it is uneven distributed.

Thanks for listening!