International Geotechnics Symposium cum International Meeting of CSRME 14th Biennial National Congress (IGSIM) Hong Kong, December 14-17, 2016

Stress and Deformation Characteristics of Transmission Tower Foundations on Permafrost

Zhi Wen

State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China 730000

- 1. Engineering problems related to frozen ground
- 2. Observation on stress and deformation
 dynamics of Transmission Tower Foundations
 on Permafrost
- 3. Simulation of stress and deformation dynamics
- 4. Conclusions

1. Engineering problems related to frozen ground

Diagram of frost heave and thaw settlement

Damages related to frost heave

Damages related to thaw settlement due to thawing of ice-rich permafrost

Force diagram of pier foundation in frozen ground

- Past studies paid more attention on the statics analysis and risk assessment, and focused on the measurement of frost heave force, deformation, adfreezing strength, etc (Perameswaran, 1978; Weaver and Morgenstern, 1981; Tong et al., 1985; Ladanyi and Foriero, 1998; Wen et al., 2013).
- However, the stress and deformation dynamics during freezing-thawing cycle have not been fully understood.

Transmission project from Golmud to Lhasa in permafrost regions

- Stress and deformation dynamics subjected to both freezing-thawing cycle and wind loads?
- Long-term stress and deformation dynamics influenced by global warming?
- Validation of thermosyphons to mitigate thaw settlement hazard?

2. Observation on stress and deformation dynamics of Transmission Tower Foundations on Permafrost

- Seasonal variations in the contact stress depended on the seasonal freezing and thawing of foundation soil.
- The cooling of the underlying soils led to the occurrence of frost heave, which pushed the foundations upward and caused a significant stress bulb under the bases of tower foundations.

Contact stress VS Wind Speeds

 The stresses at the bases of tower foundations had a
 close relationship with air and ground temperatures.

Contact stress VS Air temperature

3 Simulation stress and deformation dynamics

a thermal-elastico-plastic finite element model for the tower foundation-soil system

Thermal regime variations with thermosyphons in 50 years ($^{\circ}$ C)

In the freezing period, similar to observation data, significant frost heave occurs. The contact stress decreases significantly due to global warming.

Stress distribution of simulated tower foundation in thawing period has not significant change in the following 50 years.

- \succ deformation in the ground surface was very small in the thawing period.
- In the freezing period, significant frost heave occurs. The amount of frost heave is the smallest at the foundation and it increases gradually far from the foundation.

Deformation at the top of the foundation in the following 50 years.

- Continuous settlement occurs after the construction of the foundations and the amount of the deformation at the top of the foundation reaches approximately 0.5 m in the 50th year.
- Thermosyphons have a significant cooling effect on permafrost beneath the foundation and can significantly reduce the deformation at the top of foundation.

Highlights

- •Ground temperature is the dominant factor that determines the stress variation.
- •The refreezing of foundation soil results in significant increase in contact stress.
- Thaw settlement deformation may lead to harmful deformation of tower foundations.
- Application of thermosyphons can significantly reduce the deformation of foundation.

Thanks for your attention!

Frost jacking

