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»1. Engineering significance of
intermediate principal stress effect on rock strength

®three-dimensional unequal stress states are universal
®failure mechanism of rock material

®bring out more mechanical potentials of rock material
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rock stress states and rock fracturing type



» 2. Experimental results and strength model of
intermediate principal stress effect on rock strength
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Typical rock experimental tests results



» 2. Experimental results and strength model of
intermediate principal stress effect on rock strength
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»2. Experimental results and strength model of
intermediate principal stress effect on rock strength

®The influence of intermediate principal stress on rock
strength can not be fully reflected.

®Mechanism of intermediate principal stress effect on rock
strength is not clear. N
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»3. Mechanism discussion
of intermediate principal stress effect on rock strength

Micro cracks system
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When b is near 0,increase of effective elasticity modulus is apparent;
When b is near 1,increase of effective elasticity modulus is inapparent.



> 3. Mechanism discussion (2)

of intermediate principal stress effect on rock strength
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» 3. Mechanism discussion (3)
of intermediate principal stress effect on rock strength

Particle system

lclick to play! o, — 0,

=0

A

02 restrains the expansion of micro cracks normal to 62 direction(or with component
in this direction), which makes rock strength increases. On the other side, 62 promotes
the expansion of micro cracks normal to o3 direction(or with component in this

direction), which makes rock strength decreases.




» 3. Mechanism discussion (4)
of intermediate principal stress effect on rock strength

Effective elasticity modulus varies in a
different way as b in different interval,
due to different orientations of micro
cracks.

Micro cracks system

: The restraint and promotion of
Particle system micro cracks in different directions
lead to the intermediate principal
stress effect.

The shear planes in rock samples are considered as potential failure
planes. In order to calculate the probability of each direction, each
potential shear failure plane is regarded as a micro-unit. The effect of
the intermediate principal stress can quantitatively be estimated by
calculating the failure probabilities for all the shear planes and
combining these into the total probability for failure.

Weibull distribution is used to describe the heterogeneities of micro units strength.



>4, Statistical model
of intermediate principal stress effect on rock strength
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>4, Statistical model (2)
of intermediate principal stress effect on rock strength

Considering the nonuniform force field and using Weibull distribution
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>4. Statistical model (3)

of intermediate principal stress effect on rock strength
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>4. Statistical model (4)

of intermediate principal stress effect on rock strength
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>4, Statistical model (5)
of intermediate principal stress effect on rock strength

Mohr-Coulomb Criterion
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>4. Statistical model (6)
of intermediate principal stress effect on rock strength
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»5. Case study
—plastic zone of round tunnel under non-uniform stress filed
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»5. Case study
—plastic zone of round tunnel under non-uniform stress filed
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»6. Conclusions

The restraint and promotion of micro cracks induced by G2 make the

difference of failure probabilities in different directions, which leads to the
Intermediate principal stress effect.

Each potential shear failure plane is regarded as a micro-unit. Weibull
distribution is used to describe the heterogeneities of micro units strength.

The effect of G2 can quantitatively be estimated by calculating the failure

probabilities for all the shear planes and combining these into the total
probability for failure.

New strength criterion is developed to quantitatively describe the effect of

G2 on rock strength. When uniformity coefficient m is infinitely large, the

new criterion is equivalent to Mohr-Coulomb criterion. Therefore, the
proposed strength criterion can be regarded as a modified Mohr-Coulomb
criterion that can reflect the effect of intermediate principal stress.
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