Presented at IGSCSRM, December 2016

Experimental and Numerical Study of Depositional Mechanism of Mudflow

JING Lu

Dr. Fiona Kwok The University of Hong Kong

Dr. Andy Leung The Hong Kong Polytechnic University

Mudflow in Nature

Viscoplastic Fluid

Experiments

de Haas et al. 2015

Scaling Runout

Dynamic Similarity

$$u = f(g, L, H, t, \theta, \rho, \underline{\sigma}, \mu, \tau_y)$$

stress

Dimensional analysis

$$\frac{u}{\sqrt{gL}} = \mathbf{F}\left(\frac{H}{L}, \frac{t}{\sqrt{L/g}}, \frac{\sigma}{\rho g H}, \frac{\mu}{\rho \sqrt{gH^3}}, \frac{\tau_y}{\rho g H}, \theta\right)$$
$$\frac{\mu}{Viscosity} \sim H^{3/2}, \ \frac{\tau_y}{Vield \ stress}$$

Strategy

Flume System

Front view

Side view

Cameras

Image Processing

Improved from Matlab Optical flow toolbox

Slurry Preparation

Kaolinate clay

Rheometer (R/S SST200 soft solid tester)

Rheometry

Viscoplastic models

$$\tau = \tau_{\nu} + \mu \dot{\gamma}$$

 $\tau = \tau_y + K \dot{\gamma}^n$

Bingham model

Herschel-Bulkley model

Numerical Scheme

Computational Fluid Dynamics (CFD) Free-surface Tracking: Volume of Fluid (VOF)

Validation (1)

CFD simulations

- Finite volume scheme

- Free surface tracked by VOF method

- non-Newtonian fluid model (Bingham, HB)

20% slurry

Validation (2)

Flow profile (depth)

Flow velocity at the front

Validation (3)

Final deposition: shape

Final deposition: depth

Deposit Morphology

Increasing viscosity

Increasing yield stress

Dynamic Similarity

 $\mu \sim H^{3/2}$ $\tau_y \sim H$

A Scaling Law

Future Work

Concentration: 21.1%; Viscosity: ~0.09Pa-s; Yield stress: 36.4Pa; Slope: 18 deg

Future Work

$$\tau_y = 40 \text{ Pa}, \mu = 0.05 \text{ Pa-s}; 2 \text{ s}$$

19

Summary

Deposition of slurry relevant to natural mudflows:

- □ Fast runout and stoppage due to relatively low viscosity
- Elongated shape due to fast runout
- □ Remains stuck on the channel and steep edges due to high yield stress

A scaling law

- □ Has been tested from small-scale lab to large-scale simulation
- □ Incorporated with rheological parameters

Authors of this work: Jing L, Kwok CY, Leung, YF, Zhang Z, Dai L.