Synthetic Water Repellent Soils and Slope Engineering

Zheng Shuang, S. D. N. Lourenço, P. J. Cleall, S. W. Millis, K. Y. A. Ng and T. F. M. Chui

Hong Kong, 15 Dec 2016
What is water repellent soil?

- Wettable soil
- Water repellent soil
Contact angle

• Young's equation (Shaw, 1992)

\[\cos \theta = \frac{\gamma_{sg} - \gamma_{sl}}{\gamma_{lg}} \]

• where \(\theta \) denotes contact angle, \(\gamma \) denotes interfacial surface tensions
Origins of soil water repellency

- Natural water repellent soils (DeBano, 2000)
 - Plant oil & wax
 - Fungi species
 - Decomposed organic matter
 - Wildfire heating
- Influenced by environment
 - Temperature & Relative humidity
- Losses in agriculture

(www.permacultured.us)
Origins of soil water repellency

- Synthetic water repellent soils
 - Hydrophobizing agents (e.g. Silane compounds)
 - Simple sample preparation
 - Persistent water repellency

\[
\text{Surface of wettable soil} + \text{DMDCS} \rightarrow \text{Surface of water repellent soil}
\]

(Ng and Lourenço, 2016)
Quantification of water repellency

- Water drop penetration time (WDPT)
 - Index test
 - Simple operation

<table>
<thead>
<tr>
<th>Water repellency level</th>
<th>WDPT (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wettable</td>
<td>≤5 s</td>
</tr>
<tr>
<td>Slightly repellent</td>
<td>5-60 s</td>
</tr>
<tr>
<td>Strongly repellent</td>
<td>60-600 s</td>
</tr>
<tr>
<td>Severely repellent</td>
<td>600-3600 s</td>
</tr>
<tr>
<td>Extremely repellent</td>
<td>≥3600 s</td>
</tr>
</tbody>
</table>

(Doerr, 1998)
Quantification of water repellency

- Sessile drop method (SDM)
 - Direct measurement
 - Reproducible result

(Bachmann et al., 2000)

Soil sample for SDM

CA=70°
CA=90°, threshold
CA=120°
Rainfall-induced landslides

• “The slope failure was the result of infiltration during intense rainfall, in end-tipped, loose fill, followed by loss of strength…”

-Sau Mau Ping Landslide, 1972
-Po Shan Road Landslide, 1972

-GEO Report No. 86
Rainfall-induced landslides

- Failure mechanism (Eckersley, 1986)
 - Wettable soils
 - Infiltration
 - Excess pore pressure
 - Decreased strength

- Stabilizing method
 - Reinforcement element
 - Prevention of infiltration
Potential applications

• Slope engineering

Slope stabilization

• Natural and man-made slopes
 • Water repellent soils as impermeable barrier
 • Infiltration is delayed and reduced

• Advantages
 • Infiltration rate can be controlled
 • Can be integrated with vegetation
Aim & Objectives

• To model slopes under rainfall condition, and identify the optimum condition for water repellent soils in sloping ground

• Objectives
 • To establish the relation between infiltration/surface runoff discharge and soil water repellency
 • To investigate how the effectiveness of water repellent soil is influenced by various factors (e.g. slope angle, relative compaction and rainfall intensity)
Set-up of flume

An ongoing flume test

Rainfall simulator calibration

Nozzle: to obtain uniform rainfall

Flowmeter: to control rainfall discharge rate
Effect of soil water repellency

- Contact angle

$55^\circ, 120^\circ$

Water content vs. Time (CA=55°)

Water content vs. Time (CA=120°)
• Effect on infiltration pattern
 • Advancing of wetting front
Conclusions

• Increase in soil water repellency leads to a reduction of infiltration rate, which can be further controlled by manipulating the level of water repellency (contact angle).

• Increase in soil water repellency leads to a reduction of amount of water retained in the slope.

• Water repellent soils are promising materials for slope stabilization, improve slope safety by reducing both the infiltration and generation rate of surface runoff.
THANK YOU!

Zheng Shuang
Department of Civil Engineering civilzs@hku.hk
The University of Hong Kong

• Acknowledgements
 • The University of Hong Kong, Postgraduate Scholarship
 • Research Grants Council, Hydrologic optimum of water repellent soils for slope protection