

14-17 December 2016, Hong Kong, China

Effects of Defect Doping on the Kaolinite (001) with H₂O Adsorption

Dr. Jian Zhao

State Key Laboratory of Geomechanics and Deep Underground Engineering

China University of Mining and Technology, Beijing

2016/12/21

SUBJECTS

Introduction

- **Structure of kaolinite in clay minerals**
- Mechanism of adsorption of H₂O on kaolinite
- Effects of defects on kaolinite with H₂O adsorption

Conclusions

Large-deformation damage of soft rock

INTRODUCTION

> Dealing with large-scale deformations in soft-rock tunnels is a very important issue in soft-rock tunnel engineering.

> The mechanism of this large-scale deformation is closely related to the interaction of water molecules with soft rocks rich in clay minerals.

> In the last few decades, considerable amount of experimental efforts have been devoted to the mechanism of deformation of soft rock.

SEM image of mudstone before and after water adsorption

Introduction

In order to gain a better predictive understanding of the governing principles associated with large-scale deformation of clay minerals, the microscopic mechanism of interaction of water with kaolinite was investigated.

Calculation Methods

The interaction of water with solid surfaces:

The interaction of water with solid surfaces: Fundamental aspects Patricia A. Thiel* Surf. Sci. Rep. 7, 211 (1987) Department of Chemistry and Ames Laboratory, Iowa State University, Ames, IA 50011, USA Surf. Sci. Rep. 7, 211 (1987) Theodore E. Madey Surface Science Division, National Bureau of Standards, Gaithersburg, MD 20899, USA

The interaction of water with solid surfaces: fundamental aspects revisited

Michael A. Henderson*

Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, MS K8-93, Richland, WA 99352, USA

Surf. Sci. Rep. 46, 1 (2002)

Computer simulation (Vienna Abinitio Simulation Package referred to as VASP) based on the density-functional theory (DFT) has been proven to be a powerful and reliable tool to study water-solid interfaces at the molecular level.

Calculation Methods

The calculation steps of first principle calculation methods:

Calculation Condition

Basic parameters of the High-performance computing clusterDell blade server (128)Linux and Windows operating systemsA top speed of 30.7 trillion math operations per second

Atomic and electronic structure of kaolinite

Unit cell of kaolinite $Al_2Si_2O_9H_4$ containing 17 atoms

Parameters	Calculated	Experimental	Different radio%	
a	5.160 Å	5.155 Å	0.9	
b	5.160 Å	5.155 Å	0.9	
с	7.602 Å	7.405 Å	2.5	
α	81°	75.14°	7.2	
β	89°	84.12°	5.4	
γ	60.18 °	60.18°	0	

Atomic and electronic structure of kaolinite

Bonds	distances(Å)	Bonds	distances(Å)
Si1-O1	1.607	Si2-O2	1.609
Si1-O3	1.630	Si2-O3	1.634
Si1-O4	1.608	Si2-O4	1.609
Si1-O5	1.635	Si2-O5	1.630
Al1-O1	1.957	Al2-01	1.970
Al1-O2	1.970	A12-O2	1.954
Al1-06	1.908	Al2-06	1.906
Al1-07	1.864	Al2-07	1.874
Al1-08	1.869	A12-08	1.870
Al1-09	1.869	Al2-09	1.868
H1-O7	0.987	H3-O9	0.981
H2-O8	0.987	H4-O6	0.981

Atomic and electronic structure of kaolinite

•Band structure of kaolinite along the highsymmetry lines of the Brillouin zone. The Fermi energy is set at zero. The kaolinite has an indirect band gap with a gap width of 4.89 eV.

• The PDOS of the different kinds of oxygen atoms are similar to each other. This similarity is due to the high ionicity of the oxygen.

Mechanism of interaction between kaolinite and water molecules

•The bond length and the HOH internal angle of a free H_2O molecule are 0.97Å and 104.6°, respectively.

• It is clear that the distribution form of the total DOS is similar for the bulk and surface kaolinite. This means that our constructed surface keeps the basic properties with the bulk kaolinite.

Adsorption of H₂O on the kaolinite(001)

• We consider the four kinds of highsymmetry adsorption sites for H_2O including on-surface (three one-fold top sites (T_1-T_3) , three twofold bridge sites (B_1-B_3) , and six threefold hollow sites (H_1-H_6) and Al-surface (one sixfold hollow site H_7) of kaolinite.

• Adsorption energy of the adsorbed H₂O molecule on kaolinite substrate:

$$E_{ad} = E_{H_2O/kao(001)} - E_{H_2O} - E_{kao(001)}$$

Adsorption of H₂O on the kaolinite(001)

• The calculated energetics and geometries for the monomer adsorption on six hollow adsorption sites of kaolinite (001)

Site	$E_{\rm ads} ({\rm eV})$	$d_{\mathrm{O-H_1}} \mathrm{\AA}$	$d_{\rm O-H_2} { m \AA}$	∠HOH(deg)
H_2O	-	0.97	0.97	104.6
H_1	1.15	0.97	1.04	109.6
H_2	1.07	0.97	1.03	109.9
H_3	1.07	0.97	1.03	110.1
H_4	1.06	0.97	1.03	110.5
H_5	1.10	0.97	1.03	111.2
H ₆	1.06	0.97	1.03	110.5

•It is found that the preferred adsorption sites on the kaolinite(001) surface for H₂O are the threefold hollow sites.

Diffusion of H₂O on the kaolinite(001)

Given a H_2O monomer at a hollow site we then investigate how it would negotiate its way across the (001) surface. Since we find that H_2O does not adsorb at atop and bridge sites, only diffusion energetics between hollow and adjacent hollow sites is examined.

Dissociation of H₂O on kaolinite(001)

•Our simulation proves that no dissociation state exists for the H_2O on kaolinite(001) surface under room temperature.

•This is confirmed by our first-principles static as well as quantum molecular dynamics simulations.

Effects of defects on structures of kaolinite

•The primary contaminant defects and the concentration ranges

	Mg	Ca	1	Fe	
	0.07–0.71 wt.%	0.14–0.5	4 wt.%	0.07–0.31 wt.%	
				$\Delta d_{ij} = \frac{d_{ij}}{d}$ • The results so for the Mg-, Caldoped kaolinities surface relaxation the doping layer.	- <u>do</u> howed that -, and Fe(II)- es (001), the tion around er changed
Surface	Δd_{12} (%)	Δd_{23} (%)	Δd_{34} (%)	from contracti	on to
Kaolinite (001) Mg-doped Ca-doped Fe-doped	$-1.06 \\ -1.10 \\ -1.10 \\ -1.25$	-0.04 1.20 1.23 1.46	-0.02 1.14 1.09 1.37	expansion, due redistribution e	e to the of electrons.

Effects of defects on kaolinite(001) with H₂O adsorption

•Side view of: an adsorbed water molecule on the surface of the hollow site (a); and the Al-surface hollow site (b) of defect-doped kaolinite

•Calculated energies for monomer adsorption on six hollow adsorption sites on the surface and one hollow adsorption site on the AI surface of Mg-, Ca-, and Fe-doped kaolinite (001).

$E_{\rm ads}$ (eV)	H_1	H_2	H_3	H_4	H_5	H_6	H_7
Undoped	1.07	1.06	1.10	1.06	1.15	1.07	_
Mg-doped	0.95	1.04	1.08	0.99	1.10	1.08	0.28
Ca-doped	0.83	0.96	0.85	0.90	1.03	0.90	0.26
Fe-doped	1.01	1.07	1.02	1.03	1.08	1.00	0.20

Effects of defects on kaolinite(001) with H₂O adsorption

• Electronic partial density of states plots for the H_2O molecule and the top-layer H ions bonded to H_2O at the stable threefold hollow adsorption site on the surface.

• The energetic barriers for penetration of H2O from the adsorption site on the surface to an adsorption site on the O surface of doped kaolinites, implied that the effects of doping make it easier for water molecules to penetrate from the on-surface site to the O-surface site.

Conclusions

- We have studied the atomic and the electronic structures of kaolinite through first-principles DFT-LDA calculations. The calculated indirect band gap is 4.89 eV. Based on above results, we study the mechanism of interaction between kaolinite and water molecules in the following.
- We have found that H₂O adsorbs preferentially at threefold hollow site on surface with the adsorption energies ranging from 1.06 to 1.15 eV. The activation energies barrier ranging from 0.073 to 0.129 eV. Finally, no dissociation states of water molecule are found for the ideal kaolinite (001) surface.

Conclusions

- The results showed that after Mg, Ca, and Fe(II) doping, the surface atomic structure was changed. Due to redistribution of electrons, the surface relaxation changed from contraction to expansion around the doping layer.
- The results showed that H2O adsorbs preferentially on the surface three-fold hollow sites of Mg-, Ca-, and Fe-doped kaolinites (001), which are less than undoped kaolinite. However, the H2O molecule cannot adsorb on the undoped kaolinite O surface.
- The energetic barriers for penetration of H2O from the adsorption site on the surface to an adsorption site on the O surface of doped kaolinites, implied that the effects of doping make it easier for water molecules to penetrate from the on-surface site to the O-surface site.

ACKNOWLEDGMENTS

The research above was supported by the National Natural Science Foundation of China (No 40972196 and 41172263) and Youth Talent Support Project

Thank you for your attention