International Meeting of CSRME 14th Biennial National Congress，14－17 December 2016，Hong Kong，China

Characteristics on Rock Fractures Induced by Different Excavation Methods of Deep tunnels

Shaojun Li

State Key Laboratory of Geomechanics and Geotechnical Engineering Institute of Rock and Soil Mechanics，Chinese Academy of Sciences

Outline

■ Motivations
■ Method of rock fracture measurement
■ Deep tunnels excavated by different methods

■ Characteristics of rock fractures and hazards

■ Conclusions

Motivations

Fracture of hard rock induced serious instability of deep opennings：Example of Jinping I underground caverns

－Large deformation
－Big fractures

Fall of sprayed concrete

Excavation halted for more than 6 months
\square Rockbursts in deep openings are also related to fracture evolution

Sidewall rockburst

Tunnels of Jinping II hydroelectric project

Fracture distribution abundant boreholes around surrounding rock mass
Sit investigations were conducted to understand the correlation between fracture and tunnel stability and hazaeds

Method of rock fracture measurement

Comprehensive measurement by acoustic wave velocity and digital borehole televiewer

Acoustic wave apparatus （single or cross－hole method）

Digital borehole televiewer system

Flatpattern

Virtual core

Image of borehole wall and fractures
中国科学院武汉岩土力学研究所

■Comprehensive recognition of excavation damaged zone（EDZ）

new fractures observed by digital borehole camera and P wave velocity，$>0.2 \mathrm{~mm}$

Deep tunnels excavated by different method

CJPL－1：China Jinping underground laboratory

－Excavated in marble by TBM and D\＆B，full face

CJPL－II：China Jinping underground laboratory

－Excavated in marble by D\＆B

Excavation scheme：

Three layers，top heading（ 8.5 m ）with pilot tunnel，middle of
4.5 m ，bench with 1.0 m

Baihetan hydropower station

－Excavated at different layers in basalt
－Drillng and blasting method

The current biggest one，main power house，dimision： $434 \times 34(31) \times 86.7 \mathrm{~m}(\mathrm{~L} \times \mathrm{W} \times \mathrm{H})$

5 diversion tunnels

Characteristics of rock fractures and hazards

Change of Excavation damaged zone

test tunnel C

Test tunnel F

Statistics of EDZ under different tunnel sizes of CJPL－1

Tunnel No．	Width of EDZ／EdZ（m）		Tunnel section （m）		Relationship with tunnel geometry		Excavation method
	EDZ（ew）	EdZ（ $d w$ ）	Width （w）	Height (h)	$\boldsymbol{R}_{\text {ew }}$	$\boldsymbol{R}_{\text {eh }}$	
Test tunnel	5.2	6.8	5.0	5.0	1.1	1.1	$\begin{aligned} & \mathrm{D} \& \mathrm{~B} \text {) } \\ & \text { (Full-face) } \end{aligned}$
$\underset{\text { Test }}{\text { Tennel }}$	2.35	6.35	3.0	2.2	0.78	1.1	$\begin{gathered} \text { D \& B } \\ \text { (Full-face) } \end{gathered}$
Test tunnel	4.25	6.5	7.5	8.0	0.57	0.53	$\begin{gathered} \hline \mathrm{D} \& \mathrm{~B} \\ \text { (two benches) } \\ \hline \end{gathered}$
$\begin{gathered} \text { No. } 3 \\ \text { headrace } \\ \text { tunnel } \end{gathered}$	2.7	6.3	\＄12．4		0.22		$\begin{gathered} \text { TBM } \\ \text { (Full-face) } \end{gathered}$

$$
R_{e w}=e w / w \quad R_{e h}=e w / h
$$

$R_{e v}$ and $R_{e h}$ are 0．78－1．1 times of tunnel width and height（For D\＆B and full－ face excavation method）
$R_{e w}$ and $R_{e h}$ are 0.55 times of tunnel width and height（For D\＆B excavation with two benches）
$R_{\text {ew }}$ and $R_{\text {eh }}$ are 0.22 times of tunnel diameter（For TBM excavation）

Property of rock fracture induced by excavation

■ In situ observation on tunnel sidewalls
■ Rock spalling occurred but fractures can also be found in deep rock mass

Test tunnel B

Northern sidewall

Fracture evolution and spalling

\square Observation and calculation during the excavation layer 3

－2015．9．27，the workers heard a big sound，spalling happened inside the rock mass
－Following detail check found that there were many cracks along $0+30-0+133$ at the crown．

Main power house of Baihetan

Two borehole preinstalled
\square Observation and calculation during the excavation layer 3 \checkmark Observation in the boreholes at $0+72$

Date： 2015－9－27

\square Observation and calculation during the excavation layer 3 \checkmark Observation in the boreholes at $0+72$

Date：
2015－11－29

\square Observation and calculation during the excavation layer 3 \checkmark Observation in the boreholes at PB2： $0+90$

Fracture evolution and rockburst

Unfolded geological sketching of tunnel F in CJPL－1 project

Rockburst occurred on January 09，2010，with the volume about $6.3 \mathrm{~m}^{3}$
0.8 m to the tunnel sidewall

Rockburst occurred on Jan 09

Color change of crack tip
（a）Oct．13，2009，before excavation
（b）Dec．22，2009， 19.3 m excavated at the top heading of test tunnel F （c）Dec．28，2009， 33.1 m excavated at the top heading of test tunnel F （d）Jan．03，2010，the excavation was finished at the top heading of test tunnel F

19m 20m

（a）Oct．13，2009，Pre－ existed cracks before excavation
（b）Jan．03，2010，New cracks appeared in red line，the upper layer excavation finished
（c）Jan．04，2010， Abundant of new cracks appeared， 10.0 m excavated at the bottom layer
（d）Jan．07，2010，cracks run through， 21.0 m excavated at the bottom layer

中国科学院武汉岩土力学研究所

Change of macro cracks＇width in borehole M2－DB01 at different borehole depth

New cracks occurred，crack propagation and closure

－Change of elastic wave velocity

The decrease magnitude of elastic wave is up to 4%

The change of elastic wave of rock mass between monitoring boreholes M2－EW01 and M2－EW02 measured by cross－hole method

Time depended evolution of fracture in hard rock

（a）2009／10／20

（b）2009／11／22

（c） $2009 / 11 / 27$

（d） $2010 / 03 / 28$

（e） $2010 / 08 / 19$

During excavation

After excavation \rightarrow
－ 8 months after excavation
－New cracks occurred and existed joint propagation and closure

Conclusions

Important role of fracture in situ measurement for
\checkmark Formation and evolution process of excavation
damaged
\checkmark Rock spalling process
\checkmark Rockburst evolution and prewarning
\checkmark Mechanism of stability of underground openings
under deep environment and high stress condition

Thanks for your
 attention！

