

International Meeting of CSRME 14th Biennial National Congress, 14-17 December 2016, Hong Kong, China

Characteristics on Rock Fractures Induced by Different Excavation Methods of Deep tunnels

Shaojun Li

State Key Laboratory of Geomechanics and Geotechnical Engineering Institute of Rock and Soil Mechanics, Chinese Academy of Sciences

Outline

Motivations

- Method of rock fracture measurement
- Deep tunnels excavated by different methods
- Characteristics of rock fractures and
 - hazards
- Conclusions

Fracture of hard rock induced serious instability of deep opennings : Example of

Jinping I underground caverns

Large deformationBig fractures

Fall of sprayed concrete

Excavation halted for more than 6 months

Rockbursts in deep openings are also related to fracture evolution

Tunnels of Jinping II hydroelectric project

Phan 和学院武汉岩土力学研究 Institute of Rock and Soft Mechanics, Chinese Academy of Sc

Fracture distribution abundant boreholes around surrounding rock mass

Method of rock fracture measurement

Comprehensive measurement by acoustic wave velocity and digital borehole televiewer

Healtheau

Acoustic wave apparatus (single or cross-hole method)

Digital borehole televiewer system

Image of borehole wall and fractures

Comprehensive recognition of excavation damaged zone (EDZ)

new fractures observed by digital borehole camera and P wave velocity, >0.2mm

力学与工程国家

CJPL-II: China Jinping underground laboratory

Excavated in marble by D&B

Excavation scheme: Three layers, top heading (8.5m) with pilot tunnel, middle of 4.5m, bench with 1.0 m

Baihetan hydropower station

Excavated at different layers in basaltDrillng and blasting method

The current biggest one, main power house, dimision: $434 \times 34(31) \times 86.7$ m (L×W×H)

More than 80 boreholes were pre-drilled before excavation

Statistics of EDZ under different tunnel sizes of CJPL-1

Tunnel No.	Width of EDZ/EdZ (m)		Tunnel section (m)		Relationship with tunnel geometry		Excavation
	EDZ (ew)	EdZ (<i>dw</i>)	Width (w)	Height (<i>h</i>)	R _{ew}	R _{eh}	method
Test tunnel B	5.2	6.8	5.0	5.0	1.1	1.1	D & B ⁾ (Full-face)
Test tunnel	2.35	6.35	3.0	2.2	0.78	1.1	D & B (Full-face)
Test tunnel F	4.25	6.5	7.5	8.0	0.57	0.53	D & B (two benches)
No.3 headrace tunnel	2.7	6.3	φ12.4		0.22		TBM (Full-face)

 $R_{ew} = ew/w$ $R_{eh} = ew/h$

 R_{ew} and R_{eh} are 0.78-1.1 times of tunnel width and height (For D&B and fullface excavation method)

 R_{ew} and R_{eh} are 0.55 times of tunnel width and height (For D&B excavation with two benches)

 R_{ew} and R_{eh} are 0.22 times of tunnel diameter (For TBM excavation)

Property of rock fracture induced by excavation

- In situ observation on tunnel sidewalls
- Rock spalling occurred but fractures can also be found in deep rock mass

Different direction of fracture can be found in D&B tunnels

Fractures in TBM tunnel are almost parallel to axis

Fracture evolution and spalling

Observation and calculation during the excavation layer 3

•2015.9.27, the workers heard a big sound, spalling happened inside the rock mass
•Following detail check found that there were many cracks along 0+30 - 0+133 at the crown.

Main power house of Baihetan

Observation and calculation during the excavation layer 3

 \checkmark Observation in the boreholes at 0+72

Observation and calculation during the excavation layer 3

 \checkmark Observation in the boreholes at 0+72

✓ Observation in the boreholes at PB2: 0+90

echanics, Chinese Acailemy

岩土力学与工程国家重点实验室

Fracture evolution and rockburst

Unfolded geological sketching of tunnel F in CJPL-1 project

Rockburst occurred on January 09, 2010, with the volume about 6.3 m³

Crack initiation and evolution

0.8m to the tunnel sidewall

Rockburst occurred on Jan 09

Color change of crack tip (a)Oct. 13, 2009, before excavation (b)Dec. 22, 2009, 19.3 m excavated at the top heading of test tunnel F (c)Dec. 28, 2009, 33.1 m excavated at the top heading of test tunnel F (d)Jan. 03, 2010, the excavation was finished at the top heading of test tunnel F

要主力型与工程国家重点定验室 Evolution of cracks before rockburst

Rockburst occurred on Jan 09

(a)Oct. 13, 2009, Preexisted cracks before excavation

- (b)Jan. 03, 2010, New cracks appeared in red line, the upper layer excavation finished
- (c) Jan. 04, 2010, Abundant of new cracks appeared, 10.0 m excavated at the bottom layer
- (d) Jan. 07, 2010, cracks run through, 21.0 m excavated at the bottom layer

2.0m to the tunnel sidewall

Change of macro cracks' width in borehole M2-DB01 at different borehole depth

New cracks occurred, crack propagation and closure

Change of elastic wave velocity

The decrease magnitude of elastic wave is up to 4%

The change of elastic wave of rock mass between monitoring boreholes M2-EW01 and M2-EW02 measured by cross-hole method

Time depended evolution of fracture in hard rock

- 8 months after excavation
- New cracks occurred and existed joint propagation and closure

Conclusions

Important role of fracture in situ measurement for

- Formation and evolution process of excavation damaged
- Rock spalling process
- Rockburst evolution and prewarning
- Mechanism of stability of underground openings under deep environment and high stress condition

Thanks for your attention!

