

Future Energy Geomechanics: Deep-Seated Processes

Maurice B Dusseault University of Waterloo

Hong Kong - December 2016

Deep Energy Geomechanics...

- Hydraulic Fracture (HF) Geomechanics
 - → 23% of submitted abstracts to ARMA 2017!!
- * Deep Geothermal (EGS) Geomechanics
 - → Power, heat from low permeability strata
 - → Using the heat from co-produced water
- * Deep Energy Storage Geomechanics
 - → Salt caverns for oil, gas, H₂, compressed air
 - → Potential for deep thermal energy storage (heat)
- Deep Waste Disposal Geomechanics
 - → Disposal of waste aqueous liquids
 - → Disposal of particulate waste solids
 - → Deep biosolids disposal (plus CH₄ recovery!)

Shale Gas & Shale Oil Revolution!

Deep Energy Geomechanics

Shale Gas Basins of China

Sichuan...

Everyone agrees the Sichuan shale gas potential is **excellent**, but...

- Difficult geology
- •Folds, fractures, faults

Drilling problems

H₂S common

We have a lot to earn yet in Sichuar

	ERA	PERIOD	EPOCH	FORMATION	AGE (Ma)	THICKNESS (m)
	8	QUATERNARY			0 - 3	0 - 380
	SENOZOIC	TERTIARY	Upper		3 - 25	0 - 300
	8	IERHART	Low er		25 - 80	0 - 800
		CRETACEOUS			80 - 140	0 - 2000
		JURASSIC	Upper	Penglaizhen	140 - 195	650 - 1400
	O		Middle	Suining		340 - 500
				Shax imiao		600 - 2800
	MESOZOIC		Middle-Low er	Ziliujing		200 - 900
	ΙΨ̈́		Upper	Xujiahe	195 - 205	250 - 3000
	-	TRIASSIC	Middle	Leikoupo	205 - 230	900 - 1700
			Lower	Jialingjiang		
	\vdash			Feixianguan		
		PERMIAN	Upper	Changxing	230 - 270	200 - 500
				Longtan		
			Lower	Maokou		200 - 500
	<u>o</u>			Qixia-Liangshan		
	PALEOZOIC	CARBONIFEROUS	Mississippia	mallylons	270 - 320	0 - 500
		SILURIAN	Uppe		J - 570	0 - 1500
	۱ ^۸		Lov	Longmaxi		
	"	ORDOVICIAN				0 - 600
		CAMBRIAN	Upper	Yix ianachi		0 - 2500
			Middle	YuxianSl		
			Lower	Qiongzhusi		
	9	SINIAN	Upper	Dengying	570 - 850	200 - 1100
	100			Doushantuo		
	PROTER020IC		Lower			0 - 400
	#	PRE-SINIAN			850	
ገ		Source Rock		Conventional Reservoir		
•			'			•

Source: ARI, 2013.

Top 10 Countries in Shale Gas

Rank	Country	(trillion cubic feet)	
1	China	1,115	
2	Argentina	802	
3	Algeria	707	
4	U.S. ¹	665	(1,161)
5	Canada	573	
6	Mexico	545	
7	Australia	437	
8	South Africa	390	
9	Russia	285	
10	Brazil	245	
EIA June 2013	World Total	7,299	(7,795)

Unlocking O&G with HF...

Energy Geomechanics

Naturally Fractured Rock

Natural Fractures: Challenges

- Naturally existing fractures are largely closed
- When we do HF, we want to open and connect many natural fractures to the new HF
- So, the properties of the natural fractures are very important but we don't know how to incorporate them into models:
 - > Fracture cohesion, frictional behavior, ductility
 - → Fabric (frequency, orientation, joint sets, etc. etc.)
 - Compressibility of fractures and the effect on the permeability
 - > Effect of changing stresses on fracture aperture
 - → And so on
 - A great deal of research is needed in this area

The HF-Well Array at Depth...

The Complex Mechanics...

It turns out to be very difficult to "design" each HF stage to give optimal results

Deep Energy Geomechanics

Which Joints Slip?

Increasing p and reducing σ'_n leads to slip of critically oriented joint (blue areas).

Optimizing the HF Design...?

- ◆ Maximize accessed volume, minimize cost...
- * Current HF design models are extremely weak
- Insufficient information is collected in practice...
 - → MS is one source
 - → Deformation measurements: geomechanics calibration
 - → Post-HF assessment
 - → Long-term well behavior (RF + rate)
- Research into a deeper understanding of HF mechanics in naturally fractured rock masses
- Better monitoring, model calibration and verification

Multi-Well Pad - \$120,000,000

Deep Geothermal Geomechanics

eep Energy Geomechanics

Geothermal Methods...

- High T Geothermal? Few good sites!
- Shallow local geothermal with heat pumps is used, but it is costly
- Heat storage in porous aquifers???
- * EGS Enhanced Geothermal Systems
 - → "Intermediate-grade" thermal energy
 - \rightarrow "Heat mining" at depths of > 4 km (T > 90°C)
 - → Large volumes of rock, but little water...
- Let's look at EGS possibilities...

Deep Energy Geomechanics

Deep EGS

- Enhanced Geothermal Systems EGS
- * Issues...
 - → Cost of deep drilling to access heat because of a low geothermal gradient
 - → No surface disposal of fluids from depth
 - Scaling of pipes in the primary loop must be controlled
 - → Access to a large enough rock volume
 - → Must be at least 20 MW, more is better
- Steady, reliable, small footprint...

The EGS Concept...

- 1 Water lagoon
- 2 Pump house
- 3 Heat exchanger
- 4 Turbine hall
- 5 Production well
- 6 Injection well
- 7 Hot H₂O to district heating
- 8 Porous sediments
- 9 Observation well
- 10 Crystalline bedrock

Geothermie_Prinzip.svg: *Geothermie_Prinzip01.jpg: "Siemens Pressebild" http://www.siemens.comderivative

eep Energy Geomechanics

To Implement EGS

- Has to be deep enough to access elevated temperatures for power + heat
- In most of Canada, this means depths greater than 4 km
- Wells must be drilled economically
 - → As widely apart as feasible
- Hydraulically fractured for communication
- ...and a binary circulation system used...
- District heating is the major application

7 km Deep Drilling Rig...

...not just power, ...also district heating!

Deep Energy Geomechanics

Interwell Communication...

The Binary EGS Cycle

Special low ΔT turbine

https://serendipitousscave nger.wordpress.com/tag/e nhanced-geothermalsystems/ Deep Energy Geomechanics

Fractured region

eep Energy Geomechanics

Energy Storage & EGS

- Is it possible to store energy in a geothermal system?
- The only feasible means seems to be storing energy as heat... From where?
- Here is a concept to be studied...
- * Solar energy can be "stored" as heat in a large volume of rock at depth (if ΔT is suitable)
- And if the time scale is annual, there are potential economic advantages in Canada...

Deep Energy Geomechanics

Solar Energy...

- Photovoltaic solar panels are 10-15% efficient (will improve somewhat)
- Thermal collection can be 70-75% efficient, T > 200°C (good ΔT)
- The problem is:
 Where do we
 store the thermal energy?

Operate EGS in Reverse!

- 1 Water lagoon
- 2 Pump house
- 3 Heat exchanger
- 4 Turbine hall
- 5 Production well
- 6 Injection well
- 7 Hot H₂O to district heating
- 8 Porous sediments
- 9 Observation well
- 10 Crystalline bedrock

Geothermie_Prinzip.svg: *Geothermie_Prinzip01.jpg: "Siemens Pressebild" http://www.siemens.comderivative

Geomechanics Challenges...

- First, deep economic drilling in hard rocks
- Second, establishing primary fluid flow communication through hydraulic fracturing
 - → Stress fields, simultaneous 2-well fracking
- Third, thermoelastic modeling in naturally fractured rocks: many nonlinearities...
 - \rightarrow Joint aperture changes = $(\Delta T, \Delta p, [\sigma'], \beta_T, ...)$
- Fourth, the possibility of annual thermal recharging of the heat at depth
 - > Solar thermal heat recirculation
- Fifth, predicting, measuring and controlling induced seismicity

CAES Compressed Air Energy Storage in Salt Caverns, Porous Reservoirs

Why CAES ...?

- *Grid management
 - →Short term (hour day)
- *Decarbonization
 - → Storage (day week)
- *Climate Issues

1991-2010 average

By 2100

Climate Change Needs:

- -Decarbonization of Energy
- -More Renewables
- -More Electricity
- -ENERGY STORAGE NEEDED

Versatile Energy Storage...

- Frequency regulation and maintaining grid stability, security, resilience
- Energy harvesting (sun, wind, excess base load...) for later use (hours to day)
- * A grid-scale buffer for emergencies
- Increased grid efficiency
 - → Peak shaving to reduce base load needs
 - > Power provision in sharp demand change periods
 - → Rapid response time (spinning reserves)
 - → ...and so on...

Different Types of Load

ep Energy Geomechanics

Some Energy Storage Concepts

- Batteries (DC-AC issues)
 - → Large battery banks, 1,000,000 electrical cars...
- Chemical storage
 - → Advanced electrolysis to create H2 (storage?)
 - → Other forms of non-battery chemical storage...
- Heat storage (not for electricity)
- Mechanical energy storage
 - → Flywheels, elevation of huge mass...
- Superconducting magnets, capacitors...
- ...scale, cost, efficiency, safety... issues

CAES is Considered "Daily"

tion and frequency c power supply

Deep Energy Geomechanics

"Seconds to minutes"

Short term energy storage systems

E2P ratio: 0,25h

Batteries
Supercapacitors
Flywheels

"Daily storage"

Medium term energy storage systems

Batteries
Pumped hydropower
Storage
CAES / LAES
Thermochemical
Redox Flow

CAES time frame is considered to be daily

...and it can be large-scale 100-500 MW per project

The CAES Concept...

Combustion Gas Heats CA

Heat Efficiency

Salt - Halite - NaCl

- Soluble, $\rho = 2.16$, low $\phi = 0.002-0.02$
- Macrocrystalline 3-25 mm
- * Exhibits creep behavior at engineering T-σ conditions
- * A valuable resource...
 - → Industrial use, de-icing, etc.
 - → NaCl strata and domes trap valuable oil & gas
 - → Dry storage in mined salt repositories (Kansas)
 - \rightarrow Underground storage of fluids (CH₄, C₂H₄(OH)₂...)
 - → Waste disposal toxic & non-toxic solid wastes
 - → Power storage CAES

Salt for CAES, South of 60°

Cold Lake Fm

Prairie to 20 m

Wind in Dec Superposed with NaCl Strata

Deep Energy Geomechanics

CAES - Constant P Mode

Thick Salt & Good Wind!

Lake Huron
Coast =
best windy
sites in
SW Ontario

ianics

Salina B Salt

– thickest,
but not the
deepest

Salt - Asse Salt Mine (DE)

Deep Energy Geomechanics

Gallery Stress Redistribution

In Our Study... AB & ON

- The thinly bedded salts of ON will require the use of long
 Galleries for economies of scale
- The solutioning of such galleries is a novel aspect

A 500 MW CAES

project is feasible

sep Energy Geomechanics

Geomechanics Challenges...

- Long (800 m) galleries in thinly bedded salt is a new idea
- Stability issues
 - → Long-term roof span stability in non-salt rocks
 - → Cyclic loading and permeability/gas effects
 - → Modeling rock mass behavior is needed
- * A new advantage for long galleries...
 - → Roof instability in an axisymmetric cavern with a vertical well leads to likely well impairment
 - → But not in a gallery, the roof span is smaller...
- Porous reservoir use is an inferior option
- ...but salt is not everywhere...

Deep Energy Geomechanics

CAES Discipline Integration

Deep Disposal of Wastes

Deep Disposal?

- Industrial activity (energy) generates wastes...
- Recycling treatment disposal...
- Waste aqueous liquids and solids can be placed deep in sedimentary strata, giving...
 - -> Permanent entombment, high security
 - → Protection of the surface environment (no landfills)
 - → Reasonable costs
- The process of solid waste disposal is one of continuous hydraulic fracturing...
- Issues include site suitability, operations management, monitoring...
- → +20 years experience now exist...

Ideal Disposal Lithostratigraphy

Waste Pod Growth

Schematic of Injection System

Deep Injection near Los Angeles

Deep Energy Geomechanics

One Day's Injection Record

Salt Cavern Waste Disposal

- Integrity
- Stability
- * Security
- Safety
- * Longevity
- **♦** ...
- **♦** ...

ep Energy Geomechanics

Deep Disposal Geomechanics

- Site selection and capacity
- Monitoring of "everything" to assure good containment and process control
- Massive stress changes induce changes in the formation response to injection
- Well integrity must be assured, monitored
- Simulation is challenging (we are trying DEM methods to achieve better understanding)
- In salt caverns... ...closure rates, excess brine disposal, and some other geomechanics issues
- Challenges remain, and many geomechanics issues arise

Conclusions - A

- Geomechanics must be integrated with...
- * Geological, geophysical sciences (e.g.: fabric)
- * Petroleum engineering (e.g.: multiphase flow)
- Thermal sciences (e.g.: thermoelastic stresses)
- * Environmental sciences (e.g. well integrity)
- Need for decarbonization (climate change...)

Interdisciplinary integrations present great challenges and great opportunities for geomechanics research and development

Conculsions - B

- Deep Geomechanical Processes involve...
- A urgent need for better monitoring, especially deformations (fiber optics, tilt...)
- Models that can simulate the evolution of naturally fractured rock mass properties
- Understanding of large-scale stress changes and induced seismicity (prediction, control...)
- Impacts of cyclic loading on rocks daily to annual cycles
- Geomechanics is the key discipline in most deep energy-related processes

Acknowledgements

- * Conference organizers, especially Quentin
- Yin Shunde, one of the best graduate students I have ever had the pleasure of helping (he taught me a great deal)
- * Colleagues and funding agencies over 30 years...